IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 1, JANUARY 1993 29

Analysis of a Wide Radiating Slot 1n
the Ground Plane of a Microstrip Line

Masoud Kahrizi, Tapan K. Sarkar, Fellow, IEEE, and Zoran A. Maricevic, Student Member, IEEE

Abstract—An analysis of a wide rectangular radiating slot ex-
cited by a microstrip line is described. Coupled integral equations
are formulated to find the electric current distribution on the
feed line and the electric field in the aperture. The solution is
based on the method of moments and using the space domain
Sommerfeld type Green’s function. The information about the
input impedance or reflection coefficient is extracted from the
electric current distribution on the microstrip line utilizing the
matrix pencil technique. The theoretical analysis is described
and data are presented and compared with other theoretical and
experimental results.

1. INTRODUCTION

RINTED circuit microstrip antennas have been exten-

sively investigated in the last two decades. Among them
slot antennas have played an important role for a variety
of radar and satellite communication applications. The main
advantages of radiating slots are wider bandwidth, less in-
teraction via surface waves, better isolation and negligible
radiation from feed network. Narrow slots have already been
analyzed by various methods. Das and Joshi [1] have provided
an expression for the complex admittance of a radiating slot
in the ground plane of a microstrip line from the complex
power radiated and discontinuity in the modal voltage. Their
work is based upon the assumption that the electric field in
the slot has a single component varying sinusoidally along the
slot. A moment method solution combined with the reciprocity
theorem [2] has been applied to a radiating narrow slot in
the ground plane of infinitely long microstrip line. For the
narrow slot, a spectral domain moment method approach is
studied [3]. A related structure that used small aperture for
coupling between a microstrip patch antenna and its feed line
has been reported in [4]. In addition to the theoretical works,
experimental results are presented for the narrow slot in the
X band [5].

The wide slot antennas are of great promise. The previous
assumptions are no longer valid for this case, and in practice
the slot is fed by an open-ended microstrip line. In this paper,
no presumption has been made for the electric surface current
on the feed line. Both components of the electric fields in the
slot have been considered in this analysis.

The formulation of the problem is presented in Section
II and the results in the form of the three sets of linear
equations are obtained. In Section III a brief discussion for the
necessary Green’s functions is given. The Green’s functions
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Fig. 1. Geometry of a wide slot antenna fed by an open ended microstrip line.

are written in the Sommerfeld integral representation. The
input impedance of the antenna or the reflection coefficient
of the line is computed from the current distribution on the
feed line. This method gives more accurate results about
the fundamental modes and also higher order modes which
exist in the vicinity of the discontinuity represented by the
slot. In Section TV some numerical techniques are presented.
Numerical and experimental results are given in Section V.

II. FORMULATION OF THE ANALYSIS

Fig. 1 shows the geometry of this problem. The ground
plane and dielectric substrate extend to infinity in the x and y
directions. The electric surface current on the microstrip line is
y-directed. The electric field across the aperture has both z and
y components (Fig. 2(a)). By using the equivalence principle
the aperture can be closed and then replaced by an equivalent
magnetic surface current M, below the ground plane and
—M . above the ground plane (Fig. 2(b)). The equation

M,=%xE, D

relates the magnetic current M to the unknown electric field

E, in the slot. Therefore, we can decompose the original
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Fig. 2. Cross section of antenna with feed. (a) Omginal problem. (b)
Equivalent problem.

problem into two isolated problems “a” and “b” (Fig. 2(b)):

1. Problem “a” is valid in the region z < 0 with the fields
which can be generated by the magnetic current M, and
the electric current J,,s. Jms is the unknown electric
surface current on the microstrip.

2. Problem “b” is valid in the region z > 0. The only source
in this region is —M, which radiates in the presence of
the infinite perfect electric conductor plane.

The total electric and magnetic fields in the region “a” and
region “b” can be written as follows:

Eiy =E (Jms) + E"(M,) )
Hyp =T (T o) + H (M) 3)
By =B (-M,) @
o, = 0’ (-1,). )

Next, the preceding fields should be expressed in terms of
Green’s functions of a multilayer inhomogeneous region.
Therefore, we can write

Fa(j’ms) = // EZJ(J},?], _d7 37’7?/7 _d)

Tms(@', ) do’ dy’ (6)
—Ea(—ﬂs) - [/ 5(ZE]\I(‘E7 Y, _d; I/, y/7 0)

sl

‘M,(z',y) dz’ dy (7
F”‘(jms) :/ 5CL.HJ(]’.7:‘170;x17y/7_d)
Tms(',y') da’ dy (8)

—_— —_— :a,b
Ha7b(]\/-[s) = // GH]VI(:E’ Y, 0; wla yla O)
sl
M (2, y') da’ dy . ©

The dyadic Green’s functions can be expanded in terms of the

required components such as

—a.b
- A s ~ab oA ya,b
Ganr = 883G 100 + 39GH L,
. < ~ab - & ya,b
+ ymGiI]\!yx + ny?{ZVIyy' (10)
For simplicity the positional dependence of the dyadic Green’s
function have been omitted. However, these components de-
pend on the position vector expressed by G, = Ha at
(%,9.0) due to a unit y-directed magnetic current element at
(z',y,0) radiating in region “a”.
The coupled integral equations can be obtained by enforcing
the boundary conditions given below:

1. The total tangential magnetic field is continuous across
the aperture.
2. The total E, field is zero along the microstrip line
surface.
Here, it should be noted that the continuity of electric field
across the aperture has already been satisfied by using M
and —M  on different sides of the aperture. These conditions
result in the following set of equations for M, and J,,s:

b

tan

a —

Ftan(‘]ms) + Fa

oon(Mg) = H,, (—M,), in theslot (11)

E¢(Tms) + EL(M,) + Eirc =0,

on the microstrip line. (12)
In the above equations we have included the Eiy‘1C as the
electric field due to a series voltage gap generator which affects
our structure through the region “a”. In the case of receiving
antenna one may add the expressions for the incident field to
the right hand side of (11) and (12).

We now use subsectional basis and testing functions in order
to apply the method of moments. The suitable basis and testing
functions for the electric and magnetic surface currents are the
rooftop functions in the appropriate directions. For the electric
current on the microstrip line, the line is divided into K + 1
rectangular cells along its length all of the same dimensions
wyg X Ajy. Therefore the current can be expanded as

K
Tms =3 LT (T -75,) 4 (13)
n=1
where
J (= 1—M lz] < we/2, |yl < A
T, (r) = Ay e 4 (14)
0, elsewhere.

The center of the nth basis function for the electric current J,, 5
is denoted by the vector an. By this choice, the transverse
variation of the electric current on the microstrip line has been
assumed to be constant, and the longitudinal distribution is to
be found by this method.

In the case of the magnetic current we are facing with
two dimensional currents. For this purpose, the surface of the
aperture is divided into m X n rectangular cells which are
chosen of equal size with dimension A, x A,.m(n) is the
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number of divisions in z(y) direction. To be more specific,
referring to Fig. 3, the relations between the number of basis
functions and the number of divisions are M = (m—1)n: The
number of z- directed basis functions. N = m(n — 1): The
number of y-directed basis functions. The magnetic currents
are thus given by the expansions of the form

+ZVMT (F—7M

where the basis functions located at the origin are defined as

M
M, Z VmTM (7 — r

=1

(15)

X
() = {1 B w<anmi<az g
0, elsewhere
1yl
T™ (7) = { A |z] < Az/2,]y] < Ay (17
0, elsewhere

7ai (T2 is the center of i(j)-th z(y) directed basis function.

The next step in applying the method of moment is to select
the testing procedure. As testing functions, we choose the same
expansion functions TQI ,TM, and TM. On defining the proper
Hilbert inner product in the form

(4,B), = //A*Bds

where the star denotes the conjugate, the boundary condition
equations lead to K+ M+ N linear equations with K + M+ N
unknowns which, when expressed in matrix form, are

(18)

[Z3,] [Ty [Ty
[C2,] Ve +Y5] [V, +Y5]
[Dg,] Yo + Y] [Y“+Y"]_
[1°] \@
Vz]| =] 0 (19)
Vil 0
The matrix elements are defined as
yuu "(TJ( ) Ea(TJ(T “FJ ))ms
(K x K) 20)
tZ£’Lj = (j\—;&](F - F;z% E;(Ta{:u(;r—l - Tgﬁ)))ms
(K x M) 21
c;yz] - (TM(T - T ) HG(TJ(T - ,r )))Sl
(M x K) (22)
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Fig. 4. Microstrip structure with three different sources. (a) y-directed HED
at z = —d. (b) xz-directed HMD at z = 0. (¢) y-directed HMD at z = 0.

Yot = (M7 — ), Hob (T (7 —72))a

(M x M) (23)
de,o= (M T — ),  He(T) (7 —71)))st

(N x K) (24)

and similarly the vector elements related to excitation can be
defined as
Tyj)’ Ean)ms

(Kx1) (25

III. GREEN’ S FUNCTIONS

By definition, Green’s functions are actually the potentials
created by a unit source. In the structure which is considered
here, we need three different cases (see Fig. 4). First a y-
directed electric dipole horizontally (HED) located at z = —d
is studied. Second (Third) we describe z(y)-directed magnetic
dipole horizontally (HMD) located at z = 0. Since the system
is linear, the superposition principle can be applied to find
the potentials resulting from any finite source. We now go
through the details for each case.

1. y-directed HED: In this case two components of mag-
netic vector potential A,, A, are necessary to specify the
field completely. The electric and magnetic fields can be
derived from the magnetic vector potential by

— —_ 1
E=—-jwA+ -
Jwpe

1— —
= -V x A.
"

V(V-4) (26)

|

@7

Here ¢ and p are the permittivity and permeability,
respectively, of the medium whose fields are of our
interest. The complete solution for the magnetic vector
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potential has been given in [6], [7] and for our structure
is given by

Ay ( LI (O
{A“ } 47r/D Hy™ (Fp)
expui{z + d)
{ — sinh (ugz) }dkp
sinh (uad)

forz < —d
for0 > 2z > —d

AL (p2)| _me—1) 0
FERVSS S
/DTEDTM
exp u1(z + d)
{ cosh (ug2) }dk,,
cosh (uod)

forz < —d
for0 > z > —d

HéQ)(APP)

(29)

The notation used here will be given at the end of this
section. Also

a N a 1
EJyy — —,]wAyz(p,—d) + jWEl
a (0
Gl(p,~d 30
"9y ( 5y &P )) (30)
where G is defined by
VA= 1 Gp,2) 31
dy
or
G;_{(/)’ _d)
_ 1 [ kp[u1 + us tanh (upd)]
A, Drg D1y
HE (kop) - (32)

For the magnetic field components we have
1 /8A2 0AS
G ypy = — 2 (p,0) — —2(p,0 33
10 M( 200 - S00) 6
. 1 8A“

2. z-directed HMD: Two components of electric vector
potential F, I, are sufficient to specify the field for
this source. The electric and magnetic fields in terms of
the electric vector potential are given by

— 11— =
E=—VXxF (35)
€
— — 1 -
H=—jwkF 4+ —V(V.F) (36)
Jwpe
After solving this problem in a similar way to HED, we

obtain the complete expression for the electric vector
potential as

(B3}

kp @)
—_— {7k
c DTM cosh (ugd) 0 ( pp)
exp u1{z + d)
U1 inh us(z + d) + cosh uz(z + d) dkp
Un€EL
forz < —d
for0 >z > d 37)
ey
F2 (p.2)
ea(er )
= 2. —H k
4w Ol" / DD (Fop)
€1 exp ur(z +d)
€9 cosh (uqd) .
— sinh (ugz) dkp.
sinh (uad) cosh (uad)
forz < —d
for0>z2>d (38)

The expression for the required field components in this
case can be written as follows:

Barse = (T2 (0 —) - 20 -) 39
Giraser =~ JWFE(0) + o
: (%Gi\[(ﬂao)> (40)
Srarys = jw%% ( ;x G (p, 0)) 41
where G is defined by
V-F:‘egin}[(p,z). (42)

oz

. y-directed HMD: In a similar way we need components

of electric vector potential I, F, to specify the field for
this source. These components are expressed by

U -{E03)
{ Ep, g} 62(27: 22 (DEZ%TMH(@UW)
oy (e 18

€2 cosh (uad)

forz < —d

for0 >z > —d (43)

— sinh (ugz) dkp.

sinh (uad) cosh (ugd)

forz < —d

for0 > 2z > —d (44)

For the field components we have

. 1 8F
Ebyy = ga—x'(m —d) (45)

1 0
a

4
HMay = Jon 83:( ) (46)
" 1 9
GHaryy = — jwk,, (p,0) Ton By

+
( G (p 0) 47)
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Here GM is defined by

V.F= engf,VI(p, 2)

48
3y (48)
and results in the same expression as before.
Since we need to satisfy the boundary condition at z = —d and

z = 0, the z dependence can be suppressed in the final form of
the Green’s functions. Therefore we only have p dependence
for these functions where p is the radial distance between the
source point and the field point

p=+/(x—2)2+(y—y)> (49)
The details of the other notations are given by
D1y = uq + ug coth (UQd) (50)
Doy = €,u1 + ug coth (’lLQd) én
& == (52)
€1
uy = gk, = 4/k2 — k2 (53)
ug = jks, = /K2 — k2 54)

where k; = w?pe; and ky = w?pey. The zeros of Drg
and Dty correspond to TE and TM surface waves, respec-
tively. The existence of these zeros causes some problems in
numerical integration.

The Green’s functions related to the region “b” can be easily
found from the correspondence functions in the region “a” by
d — 0. In the next section we will discuss the numerical
techniques to carry out the result.

IV. NUMERICAL TECHNIQUES

In order to solve (19), we need to numerically evaluate
the matrix elements given in (20)—(24). These computations
include a double surface integral over coordinates x, v, z’,y’.
Therefore, the Green’s functions expressed by Sommerfeld
integral have to be computed in the first step. It can be
observed from (30), (33), (34), (39)-(41), (45)-(47), that the
derivatives have to be taken with respect to z and y. Most of
these derivatives have been transferred to the basis and testing
functions by using integration by parts. However, there exist
some cases in which this operation is not possible, and we
have to apply the derivatives on Sommerfeld integral. Evén
though taking the derivative of the Sommerfeld integral could
introduce some problems regarding the convergence of the
original integral, this is not a problem as in our cases the
source and field points are at different levels.

The Green’s functions expressed in the space domain only
depend on the source-to-field point distance. Therefore, they
have been tabulated for a certain number of points in our
structure. This number depends on the maximum distance
between the source and field points. Interpolation technique
has been used to compute these functions at any other point.
Hence, the integral in the form

/ HO) (k,p) FR2E - dk,

has to be computed in a preliminary step. The function f

(55)

33

and the integer n depend on the type of Green’s function.
The details of computing this kind of integrals are described
in [6]. Here we only mention some of the important points.
Numerical integration of (55) has been carried out along the
real axis and by using the integral relationship

/ HE (k,p) f(RDEH - d,

o0

i /0 Tu(kop) FEDR  dk,. (56)
In some cases the function f contains D7y in the dominator.
This term introduces a surface pole which must be extracted
analytically prior to numerical integration. It should be noted
here that we have assumed-that Dty has no zeros and Dy
has only one zero. This is true for the most of our practical
purposes. In addition to surface wave pole, there exists a
branch point singularity at &, = k, which has been eliminated
by a change of variable.

By extracting the asymptotic value of the integrand for
k, — oo, corresponding to the static term of the Green’s
function, we have obtained two benefits. First we numerically
have to evaluate smoother functions which in turns increase the
accuracy of the numerical integrations. Second the singularity
due to zero radial distance which occurs when the source
and field points are on the same cell has been removed. The
asymptotic term for all cases is in the form ¢/p, where constant
¢ depends on the type of Green’s function. This subtracted term
acts as another Green'’s function. For a rectangular cell and our
rooftop testing functions, computations corresponding to this
term have been done analytically. This ends our discussion for
finding the unknown vector I, V,, and V;, through (19).

For finding the reflection coefficient on the microstrip line,
the matrix pencil technique has been used. In this technique
which has been described in [8] and [9], a function has been
fitted by a sum of complex exponentials. Hence the electric
current I(y) on the microstrip line can be given by

Ne
I(y) =) aie™? y<L (57)

=1
here y = L, is thie position of the open end. N,, the number
of exponentials, s;, the complex propagation constant, and
a; the amplitude of the various exponentials have to be
computed through the method. This is equivalent to numer-
ically separating the incident wave, the reflected wave, the
evanescent waves, the complex waves and/or the higher order
propagating modes. The incident and reflected current wave
directly define the reflection coefficient. It has been observed
that in the vicinity of aperture the propagation constant for
the fundamental mode is different from what we obtain for a
perfect microstrip line. However, if we extract this information
from the current distribution far from the discontinuity, this
difference diminishes.

V. RESULTS

In this section, the results evaluated by this technique
are given and compared with othier results available irl the
published literature.
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Fig. 5. Calculated input impedance of a stub-tuned narrow slot fed by a
microstrip line. ¢, = 2.2,d = 0.2032 cm. wy = 0.635 cm, ws = 0.1016
em, L = 4.0 cm, Ly = 0.17 cm.

o modeled with E, and FE,
+modeled with £,

\ [

Fig. 6. Calculated input impedance of a stub-tuned narrow slot fed by a
microstrip line for two kinds of modeling. e, = 2.2,d = 0.2032 cm,
wy = 0.635 cm, ws = 0.1016 cm, L = 4.0 cm, L; = 0.17 cm.

Fig. 5 shows the normalized input impedance of a narrow
slot of dimensions 4.0 x 0.1016 cm fed by a microstrip line of
width w; = 0.635 cm as a function of frequency calculated
by this theory. The substrate parameters are d = 0.2032 cm,
€, = 2.2. The microstrip line is excited by a series voltage gap
generator located at y = —25.0 cm. The input impedance is
calculated from the reflection coefficient for the fundamental
microstrip mode. For finding the reflection coefficient, current
distribution on the entire structure is first solved for. Then the
matrix pencil technique is used to fit the current on the line
to separate the incident, reflected and other modes. From the
amplitudes of the incident and reflected modes the reflection
coefficient has been computed. The results for the fundamental
mode are quite stable. The convergence has been insured by

Fig. 7. Calculated input impedance of a wide slot fed by an open ended
mucrostrip line. - = 2.5,d = 0.079 cm, wy = 0.025 cm, ws; = 0.25 cm,
L =08cm, Ly = 0 cm.

Fig. 8. Measured input impedance of a wide slot fed by an open ended
microstrip line from [10]. ¢, = 2.5.d = 0.079 cm, wy = 0.025 cm,
ws = 0.25 cm, L = 0.8 cm, Ls; = 0 cm. (a) Versus slot width. (b) Versus
frequency.

increasing the number of expansion functions. The reference
plane in Fig. 5 is y = 0, the center of slot. The theoretical
results of [3] are also provided in Fig. 5. The agreement
between these two theories is good. Fig. 6 shows two sets
of input impedance for the same slot discussed in Fig. 5.
First set is for the case that we only considered the dominant
component of the electric field E, and in the second set both
components of electric field have been taken into account. For
the narrow slot as we expected, the results are quite close
to each other. However as we increase the width of slot, the
difference between these two cases increases.

The results for the input impedance of a wider slot are
shown in Fig. 7. The microstrip line, of width w; = 0.025
cm, on a dielectric substrate of ¢, = 2.5, and d = 0.079 cm
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Fig. 9. VSWR of a slot antenna fed by a 50 € long microstrip line.
€ =2.5,d =0.079 cm, wy = 0.224 cm, ws = 0.25 cm, L = 0.8 cm.

+modeled with E, and E,
¢ modeled with E,
\ TN

Fig. 10. Calculated input impedance of a wide slot fed by an open ended
microstrip line for two kind of modeling. ¢, = 2.5,d = 0.079 cm,
wy = 0.025 cm, ws = 0.25 cm, L = 0.8 cm, Ls = 0 cm.

has been used to excite the slot of dimensions 0.80 x 0.25 cm.
The stub length is considered to be zero. This case has been
chosen to be compared with the experimental results given in
[10] as shown in Fig. 8. They show the similar behavior for
the antenna. There is a shift of frequency of about 4 percent
between these two plots. The reference plane for Fig. 7 is at
y = —1.98 cm.

Fig. 9 shows the measured VSWR plot for a slot of the
same dimension as Fig. 7, but in the ground plane of a 50 €
line. The line has two open ends and each of them could be
matched to a 50  load. The data given in Fig. 9 allows one to
determine the resonant frequency of the slot and oy to match
it by changing the stub length if that is possible. The region of
minimum VSWR agrees well with the computed data shown
in Fig. 7.

In Fig. 10 we compare the results when we ignored the x
components of the electric field for the slot of Fig. 7 with
the computed results when all components are considered. By
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Fig. 11. Calculated input impedance as a function of stub length.
& =2.5,d =0.079 cm, wy = 0.025 cm, ws = 0.25 cm, L = 0.8 cm.

Fig. 12. Calculated input impedance for a wider slot. The reference plane
isaty=-19 cm. ¢, = 2.5,d = 0.079 cm, wy = 0.025 cm, ws = 0.38
cm, I = 0.8 cm, L; = 0 cm.

comparing this result with that of Fig. 6, it becomes clear that
for wider slots both components need to be considered.

The input impedance for a slot of Fig. 7 as a function of
stub length L, is illustrated in Fig. 11. Fig. 12 shows the input
impedance of a slot with a different width w, = 0.38 cm. By
considering an extremely wide slot, we observe the necessity
for considering both the components of electric field. Fig. 13
shows the difference in the calculated input impedance for a
square slot.

The x and y components of electric field for the square
slot of Fig. 13 are shown in Fig. 14. They are normalized
magnitudes of the field components. E, is an odd function of
z as it should be because of the symmetry of the problem and
satisfies the edge conditions. E, is an even function of . The
magnitudes of E,, and F, are quite comparable to each other.
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Fig. 13. Calculated input impedance of a wide slot fed by an open ended
microstrip line for two kind of modeling. ¢, = 2.5,d = 0.079 cm,
wy = 0.025 cm, ws = 0.8 cm, L =08cm, Ly =0 cm.
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Fig. 14. Nommalized = and y components of the electric field across the

aperture. €» = 2.5,d = 0.079 cm, wy = 0.025 cm, ws = 0.8 cm, L = 0.8

cm, Ly = 0 cm, Freq. = 16.0 GHz.

Therefore for a wide slot, analysis of radiation pattern should
consider both components of the electric field.

VI. CONCLUSION

A full wave analysis for a rectangular wide slot antenna fed
by a microstrip line using the method of moments and the
matrix pencil method has been described. Considering both
components of the electric field in the aperture leads to a
reliable current distribution on the feed line. The matrix pencil
method has been used to analyze this current and separate
different modes on the line.
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