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Analysis of a Wide Radiating Slot in

the Ground Plane of a Microstrip Line
Masoud Kahrizi, Tapan K. Sarkar, Fellow, IEEE, and Zoran A. Maricevic, Student Member, IEEE

Abstract-An analysis of a wide rectangular radiating slot ex-

cited by a microstrip line is described. Coupled integral equations

are formulated to find the electric current distribution on the
feed line and the electric field in the aperture. The solution is
based on the method of moments and using the space domain
Sommerfeld type Green’s function. The information about the
input impedance or reflection coefficient is extracted from the

electric current distribution on the microstrip line utilizing the
matrix pencil technique. The theoretical analysis is described

and data are presented and compared with other theoretical and

experimental results.
/

Microstri~ line
I. INTRODUCTION

PRINTED circuit microstrip antennas have been exten-

sively investigated in the last two decades. Among them

slot antennas have played an important role for a variety

of radar and satellite communication applications. The main

advantages of radiating slots are wider bandwidth, less in-

teraction via surface waves, better isolation and negligible

radiation from feed network. Narrow slots have already been

analyzed by various methods. Das and Joshi [1] have provided

an expression for the complex admittance of a radiating slot

in the ground plane of a microstrip line from the complex

(a)

(b).,
power radiated and discontinuity in the modal voltage. Their ~,g ~ Geometry of a wide slot antenna fed by an open ended microstrip line.
work is based upon the assumption that the electric field in

the slot has a single component varying sinusoidally along the

slot. A moment method solution combined with the reciprocity

theorem [2] has been applied to a radiating narrow slot in

the ground plane of infinitely long microstrip line. For the

narrow slot, a spectral domain moment method approach is

studied [3]. A related structure that used small aperture for

coupling between a microstrip patch antenna and its feed line

has been reported in [4]. In addition to the theoretical works,

experimental results are presented for the narrow slot in the

X band [5].

The wide slot antennas are of great promise. The previous

assumptions are no longer valid for this case, and in practice

the slot is fed by an open-ended microstrip line. In this paper,

no presumption has been made for the electric surface current

on the feed line. Both components of the electric fields in the

slot have been considered in this analysis.

The formulation of the problem is presented in Section

II and the results in the form of the three sets of linear

equations are obtained. In Section III a brief discussion for the

necessary Green’s functions is given. The Green’s functions
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are written in the Sommerfeld integral representation. The

input impedance of the antenna or the reflection coefficient

of the line is computed from the current distribution on the

feed line. This method gives more accurate results about

the fundamental modes and also higher order modes wlhich

exist in the vicinity of the discontinuity represented by the

slot. In Section IV some numerical techniques are presented.

Numerical and experimental results are given in Section ‘V.

II. FORMULATION OF THE ANALYSIS

Fig. 1 shows the geometry of this problem. The grcmtnd

plane and dielectric substrate extend to infinity in the z and g

directions. The electric surface current on the microstrip line is

y-directed. The electric field across the aperture has both x and

g components (Fig. 2(a)). By using the equivalence principle

the aperture can be closed and then replaced by an equivalent

magnetic surface current ~, below the ground plane and
–~, above the ground plane (Fig. 2(b)), The equation

relates the magnetic current ~, to the unknown electric field

~s in the slot. Therefore, we can decompose the original

0018–9480/93$03.00 @ 1993 IEEE
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Fig. 2. Cross section of antenna with feed. (a) Original problem. (b)
Equivalent problem.

problem into two isolated problems “a” and “b” (Fig. 2(b)):

1. Problem’’a’’ isvalid intheregion,z<O with the fields

which can be generated by the magnetic current ~s and—
the electric current tJm~. Jm~ is the unknown elec~c

surface current on the microstrip.

2. Problem “b” is valid in the region z >0. The only source

in this region is –M, which radiates in the presence of

the infinite perfect electric conductor plane.

The total electric and magnetic fields in the region “a” and

region “b” can be written as follows:

27;., = i?’ (7m.)+ 77a(7iz.) (2)

E;ot = Ea(7m.) + E“ (m.) (3)

E:ot = Eb(–m,) (4)

E:ot = Eb(–lbf.). (5)

Next, the preceding fields should be expressed in terms of

Green’s functions of a multilayer inhomogeneous region.

Therefore. we can write

/
Ea(7m.) = ‘aGEJ(z, y,–d; z’, y’, –d)

ms

. 7m. (z’, g’) h’ dy’ (6)

I
=a

77”(m.) == GEA4(J+ y, –d; z’, Y’, O)

St

~. (z’ , y’) dx’ dy’ (7)

[

=0.

77a(7m.)= GHJ(Z>v, 0;z’, Y’, –d)
. .
-ms
.~m.(x’, y’) dd dy’ (8)

1

za, b

7Pb(7i7.) = GHM(~l Y, @d, g’, o)

S1

. ~. (X’ , y’) dx’ dy’. (9)

The dyadic Green’s functions can be expanded in terms of the

required components such as

For simplicity the positional dependence of the dyadic Green’s

function have been omitted. However, these components de-

pend on the position vector expressed by G~~IZY = H. at

(r, y. O) due to a unit y-directed magnetic current element at

(z’, y’, O) radiating in region “a”.

The coupled integral equations can be obtained by enforcing

the boundary conditions given below:

1. The total tangential magnetic field is continuous across

the aperture.

2. The total Eg field is zero along the microstrip line

surface.

Here, it should be noted that the continuity of electric field

across the aperture has already been satisfied by using MS

and – MS on different sides of the aperture. These conditions

result in the following set of equations for ~s and ~~s:

E;(~m5)+E; (~5) +E~ = O,

on the microstrip line. (12)

In the above equations we have included the E~ as the

electric field due to a series voltage gap generator which affects

our structure through the region “a”. In the case of receiving

antenna one may add the expressions for the incident field to

the right hand side of (11) and (12).

We now use subsectional basis and testing functions in order

to apply the method of moments. The suitable basis and testing

functions for the electric and magnetic surface currents are the

rooftop functions in the appropriate directions. For the electric

current on the microstrip line, the line is divided into K + 1

rectangular cells along its length all of the same dimensions

w f x AJ. Therefore the current can be expanded as

(13)

T;(T-) =

{

1- g, Izl < wf/2, ly\ < AJ
(14)

o, elsewhere.

The center of the nth basis function for the electric current jm~

is denoted by the vector F~n. By this choice, the transverse

variation of the electric current on the microstrip line has been

assumed to be constant, and the longitudinal distribution is to

be found by this method.

In the case of the magnetic current we are facing with

two dimensional currents. For this purpose, the surface of the

aperture is divided into m x n rectangular cells which are

chosen of equal size with dimension AZ x AY. m(n) is the
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Fig. 3. Antema with rooftop testing magnetic current.

number of divisions in z(y) direction. To be more specific,

referring to Fig. 3, the relations between the number of basis

functions and the number of divisions are A4 = (m – l)n: The

number of z- directed basis functions. IV = m(n – 1): The

number of y-directed basis functions. The magnetic currents

are thus given by the expansions of the form

M N

z

t

E,

+
Et Ty

(a)

z

t
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&l

(b)

z

t

e, -R

+y

&l

(c)

‘i=l j=l Fig. 4. Microstriu structure with three different sources. (a) v-directed HED

where the basis functions located at the origin are defined as
it z = –d. (b) ~-directed HMD at z = O. (c) y-directed HMD at z =: O.

{

~_~ ,XI<A ,Y, <AV,2

~~(~) = ~ AZ) z) (16) Y:ii’j = (~}f(~ – ~%), %’b(%?(~’ – ~~)))sl

elsewhere (M x M) 1(23)

F% (FH ) is the center of i(j)-th x(y) directed basis function. and similarly the vector elements related to excitation can be

The next step in applying the method of moment is to select ‘efined as

the testing procedure. As testing functions, we choose the same
v = (~:(~ – ~;j)) ~~)ms (K X 1) (25)

expansion functions T;, TZM, and TVM. On defining the proper

Hilbert inner product in the form
III. GREEN’ s FUNCTIONS

(A,B)s = jA*I?ds (18) By definition, Green’s functions are actually the potentials

$ created by a unit source. In the structure which is considered

where the star denotes the conjugate, the boundary condition here, we- need three different cases (see Fig. 4). First a y-

equations lead to K+ M+ N linear equations with K + M+ N dkected electric dipole horizontally (HED) located at z = – d

unknowns which, when expressed in matrix form, are

The matrix elements are defined as

is studied. Second (Third) we describe x(y) -directed magnetic

dipole horizontally (HMD) located at z = O. Since the system

is linear, the superposition principle can be applied to find

the potentials resulting from any finite source. We now go

through the details for each case.

1. y-directed HED: In this case two components of nlag-
(19) netic vector potential Ay, A. are necessary to specify the

field completely. The electric and magnetic fields can be

derived from the magnetic vector potential by

(20)

(21)
Here c and p are the perrhittivity and permeability,

respectively, of the medium whose fields are of our

(22) interest. The complete solution for the magnetic vector
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2.

potential has been given in [6], [7] and for our structure

is given by

/

kp

, DTEDTM
H~2) (kPP)

“{CX%57”Q
forz < –d

for O>z>–d
(29)

The notation used here will be given at the end of this

section. Also

where G: is defined by

or

(30)

(31)

G:(P, –d)
1‘+ k~[ul + Uz tanh (uad)]

4X , DTEDTkl

. Hj2) (kPp) dkP. (32)

For the magnetic field components we have

(34)

x-directed HMD: Two components of electric vector

potential F., F. are sufficient to specify the field for

this source. The electric and magnetic fields in terms of

the electric vector potential are given by

E=~~x~ (35)
f

H = –jwF + ~V(V . F)
jwpe

(36)

After solving this problem in a similar way to HED, we

obtain the complete expression for the electric vector

potential as

{%[~::1}

&~‘+ kp

47? , DThf cosh (u’d)
H$2) (kPp)

“{ exp Ul(z + d)

}
~ sinh U2(Z + d) + cosh UZ(Z + d) ‘kp
u~cl

forz < –d

for O>.z>d
(37)

{%[~:’:1}

/

62(6. – 1) a ‘ lip
47r 3X , DTEDTL1

H~z) (kPp)

“{

61 exp UI(Z + f-i)

E2 cosh (u2d)

)

dlip .
– sinh (u’z)

sinh (u2d) cosh (u2d)

forz < –d

for O>z>d
(38)

The expression for the required field components in this

case can be written as follows:

(–I 8F;,
G% MY. = ~

)
Z(P -d) - $j%, -d) (39)

G3AIXZ’= – jwF;, (P, cI) + ;:

“(:G~l(@)
(40)

3.

where G~I is defined by

(41)

(42)

y-directed HMD: In a similar way we need components

of electric vector potential FY, F, to specify the field for

this source. These components are expressed by

For the

El exp UI(.Z + d)

62 cosh (u2d)

– sinh (u2,z)

sinh (u2d) cosh (u2d)
for,z < –d

for O > z > –d

field components we have

dko

(44)

(45)
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Here G~ is defined by

(48)

and results in the same expression as before.

Since we need to satisfy the boundary condition at z = –d and

z = O, the z dependence can be suppressed in the final form of

the Green’s functions. Therefore we only have p dependence

for these functions where p is the radial distance between the

source point and the field point

p = /(x – Z’)2+ (~ – y’y. (49)

The details of the other notations are given by

~TE = U1 + ‘l@ coth (uzd) (50)

~TM = C,UI + ‘l@ coth (uzd) (51)

(52)

U1 = jkzl = w (53)

I@ = jlk22 =
d

~; _ /“” (54)

where kl = Wzpcl and kz = W2,LM2. The zeros of DTE

and DTM correspond to TE and TM surface waves, respec-

tively. The existence of these zeros causes some problems in

numerical integration.

The Green’s functions related to the region “b” can be easily

found from the correspondence functions in the region “a” by

d ~ 0, In the next section we will discuss the numerical

techniques to carry out the result.

IV. NUMERICAL TECHNIQUES

In order to solve (19), we need to numerically evaluate

the matrix elements given in (20)–(24). These computations

include a dottble surface integral over coordinates z, y, z’, g’.

Therefore, the Green’s functions expressed by Sommerfeld

integral have to be computed in the first step. It can be

observed from (30), (33), (34), (39)–(41), (45)-(47), that the

derivatives have to be taken with respect to x and y. Most of

these derivatives have been transferred to the basis and testing

functions by using integration by parts. However, there exist

some cases in which this operation is not possible, and we

have to apply the derivatives on Sommerfeld integral. Even

though taking the derivative of the Sommerfeld integral could

introduce some problems regarding the contiergence of the

original integral, this is not a problem as in our cases the

source and field points are at different levels.

The Green’s functions expressed in the space domain only

depend on the source-to-field point distance. Therefore, they

have been tabulated for a certain number of points in our

structure. his number depends on the maximum distance

between the source and field points. Interpolation technique

has been used to compute these functions at any other point.

Hence, the integral in the form

(55)

has to be computed in a preliminary step. The function ~

and the integer n depend on the type of Green’s function.

The details of computing this kind of integrals are described

in [6]. Here we only mention some of the important points.

Numerical integration of (55) has been carried out along the

real axis and by using the integral relationship

J 2 n~l . d~pm%!2)(~pP)f($J~p
—cc

=2
s“

Jn(kPP) f(k;)k$+l . dkP. (56)
o

In some cases the function ~ contains DTM in the dominator.

This term introduces a surface pole which must be extri~cted

analytically prior to numerical integration. It should be noted

here that we have assumed that DTE has no zeros and DTM

has only one zero. This is true for the most of our practical

purposes. In addition to surface wave pole, there exists a

branch point singularity at kP = k. which has been eliminated

by a change of variable.

~ y extracting the asymptotic value of the integrand for

kP ~ co, corresponding to the static term of the Green’s

function, we have obtained two benefits. First we numerically

have to evaluate smoother functions which in turns increase the

accuracy of the numerical integrations. Second the singularity

due to zero radial distance which occurs when the scwrce

and field points are on the same cell has been removed. The

asymptotic term for all cases is in the form c/p, where constant

c depends on the type of Green’s function. This subtracted term

acts as another Green’s function. For a rectangular cell and our

rooftop testing functions, computations corresponding to this

term have been done analytically. This ends our discussion for

finding the unknown vector 1“, Vz, and Vv through (19),

For finding the reflection coefficient on the microstrip line,

the matrix pencil technique has been used. In this techrlique

which has been described in [8] and [9], a function has been

fitted by a sum of complex exponential. Hence the electric

current I(y) on the microstrip line can be given by

N,

l(y) = ~ a~es’y y<L. (57)

here y = L. is theposition of the open end. N., the number

of exponential, si, the complex propagation constant, and

ai the amplitude of the vaiiotls exponential have to be

computed through the method. This is equivalent to numer-

ically separating the incident wave, the reflected wave, the

evanescent waves, the complex waves andlor the higher order

propagating modes. The incident and reflected current wave

directly define the reflection coefficient. It has been observed

that in the vicinity of aperture the propagation constant for

the fundamental mode is different from what we obtain for a

perfect microstnp line. However, if we extract this information

from the current distribution far from the discontinuity, this

difference diminishes.

V. RESULTS

In this section, the results evaluated by this tecknique

are given and compared with other results available irl the
published literature.
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Fig. 5. Calculated input impedance of a stub-tuned narrow slot fed by a

microstrip line. e, = 2.2, d= 0.2032 cm. wf = 0.635 cm, w, = 0.1016
cm, L = 4.0 cm, L, = 0.17 cm.

● modeled with E. and Ev

+modeled with Eu

1 I
I

2.74

Fig. 6. Calculated input impedance of a stub-tuned narrow slot fed by a
microstrip line for two kinds of modeling. e, = 2.2, d = 0.2032 cm,
Wf = 0.635 cm, w , = 0.1016 cm, L = 4.0 cm, L. = 0.17 cm.

Fig. 5 shows the normalized input impedance of a narrow

slot of dimensions 4.0 x 0.1016 cm fed by a microstrip line of

width w f = 0.635 cm as a function of frequency calculated

by this theory. The substrate parameters are d = 0.2032 cm,

e. = 2.2. The microstrip line is excited by a series voltage gap

generator located at y = – 25.0 cm. The input impedance is

calculated from the reflection coefficient for the fundamental

microstrip mode. For finding the reflection coefficient, current

distribution on the entire structure is first solved for. Then the

matrix pencil technique is used to fit the current on the line

to separate the incident, reflected and other modes. From the

amplitudes of the incident and reflected modes the reflection

coefficient has been computed. The results for the fundamental

mode are quite stable. The convergence has been insured by

\ ----
, ~\ --A,

\ /
\/ \ /

Y GHz \

14.5 ‘ \

I

I }2.0 12.4.~_~::N

I

Fig. 7. Calculated input impedance of a wide slot fed by an

mlcrostrip line. e, = 2.5, d = 0.079 cm, W? = 0.025 cm, WS
L = 0.8 cm, Ls = O cm.

I

I

open ended
= 0.25 cm,

I

Fig. 8. Measured input impedance of a wide slot fed by an open ended
microstrip line from [10]. e, = 2.5. d = 0.079 cm, wf = 0.025 cm,

w~ = 0.25 cm, L = 0.8 cm, L, = O cm. (a) Versus slot width. (b) Versus
frequency.

increasing the number of expansion functions. The reference

plane in Fig. 5 is y = O, the center of slot. The theoretical

results of [3] are also provided in Fig. 5. The agreement

between these two theories is good. Fig. 6 shows two sets

of input impedance for the same slot discussed in Fig. 5.

First set is for the case that we only considered the dominant

component of the electric field EY and in the second set both

components of electric field have been taken into account. For

the narrow slot as we expected, the results are quite close

to each other. However as we increase the width of slot, the

difference between these two cases increases.

The results for the input impedance of a wider slot are

shown in Fig. 7. The microstrip line, of width w ~ = 0.025

cm, on a dielectric substrate of G = 2.5, and d = 0.079 cm
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‘;-.
12.8 GHz

Freq.

Fig. 9. VSWR of a slot antenna fed by a 50 Q long microstrip line.

G = 2.5, d = 0.079 cm, wf = 0.224 cm, w. = 0.25 cm, L = 0.8 cm.

I
I

+ modeled with E. and E,y

~ modeled with El
/

\/ \ I ‘\

Y GHz \ +\\\
/ L, \, ’-- \

/ K /\
\/ \ \

12.0 PA ‘, /,

11.8

Fig. 10. Calculated input impedance of a wide slot fed by an open ended
microstrip line for two kind of modeling. e, = 2.5, d = 0.079 cm,

Wf = 0.025 cm, w s = 0.25 cm, L = 0.8 cm, Ls = O cm.

has been used to excite the slot of dimensions 0.80x 0.25 cm.

The stub length is considered to be zero. This case has been

chosen to be compared with the experimental results given in

[10] as shown in Fig. 8. They show the similar behavior for

the antenna. There is a shift of frequency of about 4 percent

between these two plots. The reference plane for Fig. 7 is at

y = –1.98 cm.

Fig. 9 shows the measured VSWR plot for a slot of the

same dimension as Fig. 7, but in the ground plane of a 50 Q

line. The line has two open ends and each of them could be

matched to a 50 Q load. The data given in Fig. 9 allows one to

determine the resonant frequency of the slot and try to match

it by changing the stub length if that is possible. The region of

minimum VSWR agrees well with the computed data shown

in Fig. 7.
In Fig. 10 we compare the results when we ignored the z

components of the electric field for the slot of Fig. 7 with

the computed results when all components are considered. By

Fig. 1I. Calculated input impedance as a function of stub length.

% = 2.5, d = 0.079 cm, w~ = 0.025 cm, w, = 0.25 cm, L = 0.8 cm.

I

14.5

Fig. 12. Calculated input impedance for a wider slot. The reference lplane
is at y = –1.9 cm. e, = 2.5, d = 0.079 cm, Wf = 0.025 cm, w. = 0.38

cm, L = 0.8 cm, LS = O cm.

comparing this result with that of Fig. 6, it becomes clear that

for wider slots both components need to be considered.

The input impedance for a slot of Fig. 7 as a function of

stub length L, is illustrated in Fig. 11. Fig. 12 shows the input

impedance of a slot with a different width w, = 0.38 cm, By

considering an extremely wide slot, we observe the necessity

for considering both the components of electric field. Fig,. 13

shows the difference in the calculated input impedance for a
square slot.

The x and y components of electric field for the square

slot of Fig. 13 are shown in Fig. 14. They are normalized

magnitudes of the field components. E. is an odd function of

z as it should be because of the symmetry of the problem and

satisfies the edge conditions. EY is an even function of x. The
magnitudes of Ez and E9 are quite comparable to each other.
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13.0

I
I

Fig. 13. Calculated input impedance of a wide slot fed by an open ended
microstsip line for two kind of modeling. e, = 2.5, d = 0.079 cm,
wf = 0.025 cm, w s = 0.8 cm, L = 0.8 cm, L, = O cm.

IEZI

0.50 I

o

x -0.004

(a)

1%1

1.0.

z -0.004

A

0.0$
0.004 ~

.0 .004

,0.004

(b)

Fig. 14. Normalized z and y components of the electric field across the

aperture. c, = 2.5, d = 0.079 cm, w~ = 0.025 cm, w, = 0.8 cm, L = 0.8
cm, Ls = O cm, Freq. = 16.0 GHz.

Therefore for a wide slot, analysis of radiation pattern should

consider both components of the electric field.

VI. CONCLUSION

A full wave analysis for a rectangular wide slot antenna fed

by a microstrip line using the method of moments and the

matrix pencil method has been described. Considering both

components of the electric field in the aperture leads to a

reliable current distribution on the feed line. The matrix pencil

method has been used to analyze this current and separate

different modes on the line.
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